19 hexadecimal color codes that can be used for document drawing from a nature medicine article
Use AI software to obtain the hexadecimal color of the color directly from the pdf file of the literature. as follows
"3B99D4", "8ED14B", "F06B49","ECC2F1", "82C7C3", "19413E","1776EB", "F5B2AC", "533085","89363A","19413E", "D92B45", "60C9FF", "1B9F2E", "BA217D", "635019", "E3698A", "076B82", "A86A16"
The color starts from the selected blue as the first color, corresponding clockwise in turn
The following is the piano picture drawn in the same color in the article
Other Distinct Colors
col_vector<-c('#e6194b', '#3cb44b', '#ffe119', '#4363d8', '#f58231', '#911eb4', '#46f0f0', '#f032e6', '#bcf60c', '#fabebe', '#008080', '#e6beff', '#9a6324', '#fffac8', '#800000', '#aaffc3', '#808000', '#ffd8b1', '#000075', '#808080', '#ffffff', '#000000')
library(RColorBrewer)
n <- 60
qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
pie(rep(1,n), col=sample(col_vector, n))
library(randomcoloR)
n <- 20
palette <- distinctColorPalette(n)
colors37 = c("#466791","#60bf37","#953ada","#4fbe6c","#ce49d3","#a7b43d","#5a51dc","#d49f36","#552095","#507f2d","#db37aa","#84b67c","#a06fda","#df462a","#5b83db","#c76c2d","#4f49a3","#82702d","#dd6bbb","#334c22","#d83979","#55baad","#dc4555","#62aad3","#8c3025","#417d61","#862977","#bba672","#403367","#da8a6d","#a79cd4","#71482c","#c689d0","#6b2940","#d593a7","#895c8b","#bd5975")
# install.packages("Polychrome")
library(Polychrome)
# create your own color palette based on seedcolors
P36 = createPalette(36, c("#ff0000", "#00ff00", "#0000ff"))
swatch(P36)
myCol = c("pink1", "violet", "mediumpurple1", "slateblue1", "purple", "purple3",
"turquoise2", "skyblue", "steelblue", "blue2", "navyblue",
"orange", "tomato", "coral2", "palevioletred", "violetred", "red2",
"springgreen2", "yellowgreen", "palegreen4",
"wheat2", "tan", "tan2", "tan3", "brown",
"grey70", "grey50", "grey30")
color = grDevices::colors()[grep('gr(a|e)y', grDevices::colors(), invert = T)]
use_colors <- c(
"brown2","deepskyblue2","#46ACC8",
"#E58601","#B40F20","seagreen","darkgoldenrod2","steelblue",
"#6bAEd6","#3182BD","#08519C","#fff500","#FE9929","#EC7014","#CC4C02",
"#8C2D04","#E31A1C","#FA9FB5","#DD3497","#7A0177","#c2e699","#78c679",
"#006837","#bcbddc","#9e9ac8","#807dba","#6a51a3","#4a1486","#969696",
"#636363","#252525")
c(p018 = "#E2D200",
p019 = "#46ACC8",
p023 = "#E58601",
p024 = "#B40F20",
p027 = "#0B775E",
p028 = "#E1BD6D",
p029 = "#35274A",
p030 = "#F2300F",
p031 = "#7294D4",
p032 = "#5B1A18",
p033 = "#9C964A",
p034 = "#FD6467")
Reference
Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
Original code
ywliao blog: https://www.cnblogs.com/ywliao/p/12454567.html