Maker genes in some papers(update)
Tissue | CellType | Gene Full Name | Gene Symbol | Reference |
---|---|---|---|---|
Epididymal Epithelial cells | Principal cell | Aquaporin9 | Aqp9 | [1-3] |
Epididymal Epithelial cells | Principal cell | CF Transmembrane Conductance Regulator | Cftr | [4, 5] |
Epididymal Epithelial cells | Basal cell | Keratin 5 | Krt5 | [1, 2, 6, 7] |
Epididymal Epithelial cells | Basal cell | Claudin-1 | Cldn1 | [7, 8] |
Epididymal Epithelial cells | Clear cell | V-ATPa s e B1 subuni t | Atp6v1b1 | [2-4, 7] |
Epididymal Epithelial cells | Clear cell | Forkhead Box I1 | Foxi1 | [9] |
Epididymal Epithelial cells | Narrow cell | Carbonic anhydrase II | Car2 | [9] |
Epididymal Epithelial cells | Narrow cell | Forkhead Box I1 | Foxi1 | [9] |
Epididymal Epithelial cells | Narrow cell | CD4 antigen | Cd4 | [10] |
Epididymal Epithelial cells | Narrow cell | CD8 antigen, alpha chain | Cd8a | [10] |
Non-epithelial cells | Spermatozoa | Transition Protein 2 | Tnp2 | [11] |
Non-epithelial cells | Spermatozoa | Transition Protein 1 | Tnp1 | [11, 12] |
Non-epithelial cells | Myoid cell | Actin Alpha 2, Smooth Muscle | Acta2 | [13-15] |
Non-epithelial cells | Myoid cell | Myosin Heavy Chain 11 | Myh11 | [16] |
Non-epithelial cells | Fibroblasts | Collagen Type I Alpha 1 Chain | Col1a1 | [13] |
Non-epithelial cells | Macrophages | Adhesion G Protein-Coupled Receptor E1 | F4/80,Adgre1 | [1, 6, 17-19] |
Non-epithelial cells | Macrophages | Integrin subunit alpha M | Itgam | [18-20] |
Non-epithelial cells | Macrophages | CD68 Molecule | Cd68 | [17, 19, 20] |
Non-epithelial cells | Monocytes | Colony stimulating factor 1 receptor | Cd115,Csf1r | [13] |
Non-epithelial cells | Monocytes | Lysozyme 2 | Lyz2 | [13] |
Non-epithelial cells | Endothelial | Platelet And Endothelial Cell Adhesion Molecule 1 | Pecam1 | [21, 22] |
Non-epithelial cells | Endothelial | Endoglin | Eng | [21, 22] |
Non-epithelial cells | Endothelial | Cadherin 5 | Cdh5 | [13, 21, 22] |
Non-epithelial cells | Erythrocyte(Red blood cells) | Hemoglobin Subunit Alpha 1 | Hba-a1 | [21] |
Non-epithelial cells | Erythrocyte(Red blood cells) | Hemoglobin Subunit Alpha 2 | Hba-a2 | [21] |
Non-epithelial cells | Erythrocyte(Red blood cells) | hemoglobin, beta adult s chain | Hbb-bs | [21] |
Reference
1. Zhu, W., et al., Pattern recognition receptor-initiated innate antiviral responses in mouse
epididymal epithelial cells. J Immunol, 2015. 194(10): p. 4825-35.
2. Carvajal, G., et al., Impaired male fertility and abnormal epididymal epithelium differentiation
in mice lacking CRISP1 and CRISP4. Sci Rep, 2018. 8(1): p. 17531.
3. Krapf, D., et al., CSrc is necessary for epididymal development and is incorporated into sperm
during epididymal transit. Developmental Biology, 2012. 369(1): p. 43-53.
4. Shum, W.W., et al., Regulation of luminal acidification in the male reproductive tract via cell-
cell crosstalk. J Exp Biol, 2009. 212(Pt 11): p. 1753-61.
5. Pietrement, C., et al., Role of NHERF1, Cystic Fibrosis Transmembrane Conductance Regulator, and cAMP in the Regulation of Aquaporin 9. Journal of Biological Chemistry, 2008. 283(5): p.
2986-2996.
6. Shum, W.W., et al., Epithelial basal cells are distinct from dendritic cells and macrophages in
the mouse epididymis. Biol Reprod, 2014. 90(5): p. 90.
7. Shum, W.W., et al., Transepithelial projections from basal cells are luminal sensors in
pseudostratified epithelia. Cell, 2008. 135(6): p. 1108-17.
8. Shum, W.W.C., et al., Regulation of luminal acidification in the male reproductive tract via cell-
cell crosstalk. Journal of Experimental Biology. 212(11): p. 1753-1761.
9. Blomqvist, S.R., et al., Epididymal expression of the forkhead transcription factor Foxi1 is
required for male fertility. EMBO J, 2006. 25(17): p. 4131-41.
10. Distribution of immune cells in the epididymis of the aging Brown Norway rat is segment-
specific and related to the luminal content. 1999. 61(3): p. 705-14.
11. Hermann, B.P., et al., The Mammalian Spermatogenesis Single-Cell Transcriptome, from
Spermatogonial Stem Cells to Spermatids. Cell Rep, 2018. 25(6): p. 1650-1667 e8.
12. Wang, M. , et al . , Single-Cell RNA Sequencing Analysis Reveals Sequential Cell Fate Transition
during Human Spermatogenesis. Cell Stem Cell, 2018. 23(4): p. 599-614 e4.
13. Kalluri, A.S., et al., Single-Cell Analysis of the Normal Mouse Aorta Reveals Functionally
Distinct Endothelial Cell Populations. Circulation, 2019. 140(2): p. 147-163.
14. Xie, T., et al., Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary
Fibrosis. Cell Rep, 2018. 22(13): p. 3625-3640.
15. Guo, J., et al., The adult human testis transcriptional cell atlas. Cell Res, 2018. 28(12): p. 1141-
1157.
16. Rebourcet, D., et al., Sertoli cells control peritubular myoid cell fate and support adult Leydig
cell development in the prepubertal testis. Development, 2014. 141(10): p. 2139-49.
17. Mould, K.J., et al., Single cell RNA sequencing identifies unique inflammatory airspace
macrophage subsets. JCI Insight, 2019. 4(5).
18. Zimmerman, K.A., et al., Single-Cell RNA Sequencing Identifies Candidate Renal Resident
Macrophage Gene Expression Signatures across Species. J Am Soc Nephrol, 2019. 30(5): p.
767-781.
19. DeFalco, T., et al., Macrophages Contribute to the Spermatogonial Niche in the Adult Testis.
Cell Rep, 2015. 12(7): p. 1107-19.
20. Masaki and T., Heterogeneity of antigen expression explains controversy over glomerular
macrophage accumulation in mouse glomerulonephritis. Nephrology Dialysis Transplantation,
2003. 18(1): p. 178-181.
21. Kalucka, J., et al., Single-Cell Transcriptome Atlas of Murine Endothelial Cells. Cell, 2020.
180(4): p. 764-779 e20.
22. Lukowski, S.W., et al., Single-Cell Transcriptional Profiling of Aortic Endothelium Identifies a
Hierarchy from Endovascular Progenitors to Differentiated Cells. Cell Rep, 2019. 27(9): p.
2748-2758 e3.
intermediate monocytes : HLA-DR* [1-5] CD74[6]
naive CD8 T cells : CCR7[7-8],TCF7[8],LEF1[8]
naive CD4 T cells and naive CD8 T cells : CD45RA, CD62L, CD27, CD28, CCR9, CD31 and/or CD103 [9-13]
myeloid DC: CST3, HLA-DPA1, HLA-DQB1[14]
non-classical monocytes:TCF7L2[15,21],MS4A7,MTSS1,CDKN1C[15]
NK:CD56[22], GNLY, NKG7[16]
memory B cell:IGHM [17]
pDC: CD123, CD303, CD304 [22]
mDC(myeloid DC): CD11c, CD13, CD33, CD11b [22]
classical monocytes: CD14, CD11b and CCR2, several S100 calcium binding protein A12 (S100A12), Neuroregulin 1 (NRG1), Phospholipase A Group VII(PLA2G7), cAMP responsive element binding protein 5 (CREB5), A Disintegrin And Metalloproteinase 19 (ADAM19), Low density Lipoprotein Receptor (LDLR), scavenger receptors class B type-1 (SCARB1) and Stabilin-1 (STAB1)[20]
neutrophil-like: S100A8, S100A9, CSF3R [24]
References
1. Shi J, Fok KL, Dai P, Qiao F, Zhang M, Liu H, Sang M, Ye M, Liu Y, Zhou Y, Wang C, Sun F, Xie G, Chen H. Spatio-temporal landscape of mouse epididymal cells and specific mitochondria-rich segments defined by large-scale single-cell RNA-seq. Cell Discov. 2021 May 18;7(1):34. doi: 10.1038/s41421-021-00260-7. PMID: 34001862; PMCID: PMC8129088.
2. Yang, Jiyeon, et al. “Monocyte and Macrophage Differentiation: Circulation Inflammatory Monocyte as Biomarker for Inflammatory Diseases.” Biomarker Research, vol. 2, Jan. 2014, p. 1. PubMed Central, doi:10.1186/2050-7771-2-1.
Guilliams, Martin, et al. “Developmental and Functional Heterogeneity of Monocytes.” Immunity, vol. 49, no. 4, 16 2018, pp.595–613. PubMed, doi:10.1016/j.immuni.2018.10.005.
3. Günther, Patrick, and Joachim L. Schultze. “Mind the Map: Technology Shapes the Myeloid Cell Space.” Frontiers in Immunology, vol. 10, Oct. 2019. PubMed Central, doi:10.3389/fimmu.2019.02287.
4. Kapellos, Theodore S., et al. “Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases.” Frontiers inImmunology, vol. 10, Aug. 2019. PubMed Central, doi:10.3389/fimmu.2019.02035.
CellMarker. http://biocc.hrbmu.edu.cn/CellMarker/search.jsp?quickSearchInfo=monocyte.Accessed 1 Sept. 2020.
5. Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, et al.SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood. (2011) 118:e50–61. doi: 10.1182/blood-2011-01-326827
6. Alanio C, Lemaitre F, Law H K W, et al. Enumeration of human antigen–specific naive CD8+ T cells reveals conserved precursor frequencies[J]. Blood, The Journal of the American Society of Hematology, 2010, 115(18): 3718-3725.
7. Van der Leun A M, Thommen D S, Schumacher T N. CD8+ T cell states in human cancer: insights from single-cell analysis[J]. Nature Reviews Cancer, 2020, 20(4): 218-232.
8. De Rosa, S. C., Herzenberg, L. A., Herzenberg, L. A. and Roederer, M. 2001. 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function and T-cell receptor diversity. Nat. Med. 7:245.
9. Olaussen, R. W., Farstad, I. N., Brandtzaeg, P. and Rugtveit, J.2001. Age-related changes in CCR9+ circulating lymphocytes: are CCR9+ naive T cells recent thymic emigrants? Scand. J. Immunol.54:435.
10. Kimmig, S., Przybylski, G. K., Schmidt, C. A., Laurisch, K., Mowes,B., Radbruch, A. and Thiel, A. 2002. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J. Exp. Med. 195:789.
11. McFarland, R. D., Douek, D. C., Koup, R. A. and Picker, L. J. 2000.Identification of a human recent thymic emigrant phenotype. Proc.Natl Acad. Sci. USA 97:4215.
12. Myeong Sup Lee, Kristina Hanspers, Christopher S. Barker, Abner P. Korn, Joseph M. McCune, Gene expression profiles during human CD4+ T cell differentiation, International Immunology, Volume 16, Issue 8,August 2004, Pages 1109–1124, https://doi.org/10.1093/intimm/dxh112
13. Wei B, Liu Z, Fan Y, et al. Analysis of Cellular Heterogeneity in Immune Microenvironment of Primary Central Nervous System Lymphoma by Single-Cell Sequencing[J]. Frontiers in oncology, 2021, 11.
14. Hu Y, Hu Y, Xiao Y, et al. Genetic landscape and autoimmunity of monocytes in developing Vogt–Koyanagi–Harada disease[J]. Proceedings of the National Academy of Sciences, 2020, 117(41): 25712-25721.
15. Guo C, Wu M, Huang B, et al. Single-cell transcriptomics reveal a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19[J]. Genome medicine,2022, 14(1): 1-20.
16. Zhang C, Zhang T X, Liu Y, et al. B-Cell Compartmental Features and Molecular Basis for Therapy in Autoimmune Disease[J].Neurology-Neuroimmunology Neuroinflammation, 2021, 8(6).
17. Psarras A, Antanaviciute A, Alase A, et al. TNF-α regulates human plasmacytoid dendritic cells by suppressing IFN-α production and enhancing T cell activation[J]. The Journal of Immunology, 2021, 206(4): 785-796.
18. Musumeci A, Lutz K, Winheim E, et al. What makes a pDC: Recent advances in understanding plasmacytoid DC development and heterogeneity[J]. Frontiers in immunology, 2019, 10: 1222.
Anbazhagan K, Duroux-Richard I, Jorgensen C, et al. Transcriptomic network support distinct roles of classical and non-classical monocytes in human[J]. International reviews of immunology, 2014,33(6): 470-489.
19. .Schmidl C, Renner K, Peter K, et al. Transcription and enhancer profiling in human monocyte subsets[J]. Blood, The Journal of the American Society of Hematology, 2014, 123(17): e90-e99.
20.Van Acker H H, Capsomidis A, Smits E L, et al. CD56 in the immune system: more than a marker for cytotoxicity?[J]. Frontiers in immunology, 2017, 8: 892.
21.Collin M, McGovern N, Haniffa M. Human dendritic cell subsets[J]. Immunology, 2013, 140(1): 22-30.
22.Kapellos T S, Bonaguro L, Gemünd I, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases[J]. Frontiers in immunology, 2019: 2035.
Original code
https://github.com/broadinstitute/single_cell_classification